Рейтинг режущих плоттеров
В зависимости от расположения носителя во время работы делятся на планшетные и рулонные. Наша команда тщательно изучила разницу между видами, выделила особенности каждого: качество работы планшетного или настольного режущего плоттера на высшем уровне, но требуют много места. Рулонные модели компактны, экономичны, выполняют разные задачи и подходят для домашнего пользования. Учитывая классификацию, заявленные характеристики и мнения профессионалов, мы выделили критерии, по которым отбирались лучшие модели:
- Технология печати;
- Тип подачи;
- Параметры/скорость резки;
- Формат, тип носителя;
- Интерфейсы;
- Затраты на эксплуатацию.
Данные критерии позволили выделить 6 лучших режущих плоттеров для полиграфических предприятий, рекламных компаний и дома. Мы исключали из списка модели с отклонениями от оптимальных параметров и негативными отзывами.
Как изготовить станок для лазерной резки своими руками
Создать своими руками станок для резки металла лазерным лучом можно только твердотельный, так как для него просто подобрать комплектующие, цены на них невысокие. Основными элементами для сборки являются сам лазер и система управления его работой.
Приобрести лазер можно в специализированных магазинах или снять с готовых изделий (лазерной указки, привода лазерных дисков). Для создания управляющей схемы потребуются следующие компоненты:
- конденсаторы 100 пФ, 100 мкФ;
- резисторы номиналом от 2 до 5 Ом;
- плата для пайки;
- фокусирующая оптика;
- цилиндрический металлический корпус, подходит от светодиодного фонарика;
- мультиметр.
Также нужно заранее подготовить дополнительные для сборки компоненты:
- корпус для радиоэлементов и лазера;
- шаговые двигатели, платы управления ими;
- регулятор напряжения излучателя;
- резиновые ремни зубчатые, металлические шкивы под них;
- крепёжные элементы;
- выключатели кольцевого типа;
- USB-контроллер для цифрового управления;
- систему охлаждения;
- металлические трубки (направляющие) и доски (для корпуса).
Пошаговый процесс изготовления:
- Разбирается корпус устройства-донора, из него демонтируется лазерная головка.
- Изготавливается прямоугольный каркас из деревянных планок.
- Внутри корпуса монтируются поперечные направляющие, а на них продольные, к которым крепится станина.
- Подсоединяются к перемещаемой планке шкивы, устанавливаются двигатели, одеваются ремни.
- На перемещаемую станину закрепляется лазерная головка.
- Монтируется система охлаждения.
- К лазеру подключается плата управления.
- Выводится проводка от управляющей платы на переднюю панель корпуса, подключаются системы контроля и управления.
- Подключается USB-контроллер, на ПК согласуется с программным обеспечением, выполняются настройки.
- Проверяется работа оборудования в основных режимах.
Плата для пайки
Некоторые рекомендации по работе с лазером
Точность конструкции самой машины очень важна. Растровые скачки, очевидно являются неточностью полос и источника питания (через некоторое время заметил, что было включено ограничение тока в блоке питания, и, следовательно, короткие перебои в напряжении. Питание Arduino от USB. В планы входит покупка новых ремней и создание соответствующих натяжителей и отдельного источника питания. Что касается программного обеспечения, тесты проводились на GRBL 0,9 и 1,1, а также на контроллерах LaserGRBL и GRBL. Через некоторое время перешел на Benbox (в софт тоже Arduino), и, несмотря на то, что GRBL более культурно управляет приводом, остановился на втором — им легче пользоваться.
Материал подвергается воздействию ультрафиолетового излучения, поэтому основная проблема заключается также в выборе правильного лазера (длина волны 350 — 400 нм) и параметров, чтобы правильно его выставлять: не пережигать, но и не ждать часами.
- Мощность лазера используется средняя. Синий лазер 445 нм 2,5 Вт. Диаметр пятна 0,1 — 0,2 мм реально, механическое разрешение x-384 шаг / мм y-400 шаг / мм (по оси Y есть дополнительная передача).
- Что касается запахов при прожиге, вы можете почувствовать сгоревший текстолит. Тем не менее, определенно с ним меньше дыма, чем от фанеры или ПВХ.
- Однажды установив правильное расстояние между лазером и пластиной вряд-ли придется ли его постоянно исправлять. Лазер проработал почти непрерывно две недели и прожёг несколько метров фанеры толщиной 3 мм, причём она была обработана без коррекции фокусного расстояния. Однако после такого темпа работы приводные ремни растягивались (они не были новыми, возможно дело в износе).
После более глубокого закрашивания дорожек в CopperCam появилось что-то вроде этого:
С помощью этой опции рисуем удаление ненужной меди.
Но Benbox показывает время слишком большое. Слева сколько работает, справа сколько осталось. Плата 30 x 30 мм.
Эффект вполне нормальный. И вот плата печатная после травления.
После смывания остатков краски.
Правая платка, в CopperCam толщина фрезы 0,1 мм и 5 обходов кромок пути — время прожига 50 минут. Левая — толщина 0,2 мм и 2 обхода — время прожига около 16 минут. Практика показала что лазер хорошо режет, когда точка самая маленькая. При резке фанеры один проход составляет, скажем, полмиллиметра сгоревшей канавки, а на ее дне лазерная точка не меньше чем на пол миллиметра больше, чем она была откалибрована вручную, и уже трудно установить фокусное расстояние во второй раз. Остаётся только опустить лазер на полмиллиметра вниз, чтобы точка снова достигла своего оптимального размера. В дорогих Китайских ЧПУ есть конструкции с осью Z, которая корректирует лазер каждый проход, но это конечно дорогое удовольствие (которое для домашнего использования не особо-то и нужно).
Данный материал взят (во временное пользование) с профильного зарубежного форума.
Форум по обсуждению материала ЛАЗЕРНАЯ ГРАВИРОВКА ПЛАТ
|
|
||
|
|
О сверлильных станках на заметку
Станок представляет собой единую, жестко зафиксированную конструкцию, и состоит из основных элементов: основания, стойки различных переходников, крепления, электродвигателя и других элементов.Его задача заключается в повышении точности обработки инструментом и снижение трудоемкости работ: он максимально облегчает труд человека (например, при обработке твердых материалов, таких как металлы), и снижает влияние человеческого фактора в производстве.Обычные не дорогие мини станки перемещаются в основном по одной оси, например, сверлильные только сверху вниз.Более дорогие же могут двигаться в нескольких плоскостях, как минимум в двух, вертикальной и горизонтальной. Такие модели уже могут являться автоматическими и полуавтоматическими.
Преимущества и недостатки
Станки лазерной резки обладают следующими преимуществами:
- простота обработки хрупких деталей;
- низкая степень погрешности при позиционировании лазера над обрабатываемой поверхностью;
- удобная система управления;
- резка заготовок любой формы;
- простота гравировки и резки изделий из твёрдых сплавов;
- толщины резки: медь, латунь — до 1,5 см, сталь, алюминий — до 2 см, нержавейка — до 5 см;
- высокая скорость обработки;
- минимальная себестоимость готовых изделий.
Основные недостатки:
- сложность конструкции, обслуживания, ремонтов;
- высокая стоимость оборудования и комплектующих;
- ограниченность по толщине заготовок;
- значительный расход электроэнергии;
- особые требования к безопасности при установке, эксплуатации.
Резка заготовок любой формы
Нюансы технологического процесса
Начиная изготовление печатной платы на чпу, надо быть внимательным к некоторым важным нюансам:
- чтобы получить фотошаблон для ПП, его можно распечатать на лазерном принтере. Универсальная прозрачная плёнка имеет две стороны. Так вот, шершавую, покрытую слоем желатина, можно использовать для струйного принтера, а гладкую – для печати лазерным принтером;
- рабочий стол должен иметь плоскую и ровную поверхность. Можно сделать его из фанерного листа с последующей торцовкой. В фрезере ставится инструмент, при помощи которого несложно фрезеровать под плату своеобразное «ложе» на глубине (1-2мм);
https://youtube.com/watch?v=agj9l8zjeJo
- лист стеклотекстолита может не быть идеальным по форме и его толщина на различных участках отличается. По этой причине сверлим, допуская небольшое перерезание, степень которого определяют методом проб;
- фрезерные работы легко выполнить гравером «пирамидкой» от 0,4 до 1мм. А сверление отверстий потребует наличия сверл на 0,8 с хвостовиками под цангу стандартного размера. Вот здесь для вырезания контуров пригодится вид фрезы «кукуруза»;
- замену инструментов выполняют в ручном режиме. Если вы фрезеруете дорожки и закончили процесс, подача шпинделя останавливается на период действия режима удержания. Заменив инструмент, выставляем нуль относительно оси «Z». Таким образом поступаем каждый раз, меняя инструмент на фрезерном оборудовании. Остальные координаты обнулению не подлежат.
Выбор параметров фрезеровки
Запускаю фрезеровку, получаю вот такой результат:
Тут видно сразу три момента:
- Проблема с неровностью поверхности ушла: прорезано (точнее, процарапано) все практически на одну глубину, нигде нет пропусков, нигде не заглубился слишком сильно.
- Заглубление недостаточное: 0,05 мм явно не хватает для этой фольги. Платы, кстати, какой-то неизвестный зверь с AliExpress, толщину меди там не указали. Слой меди бывает разный, наиболее распространенные — от 18 до 140 мкм (0,018—0,14 мм).
- Явно видны биения гравера.
Про заглубление. Подобрать то, насколько глубоко надо опускать гравер, несложно. Но есть специфика. Конический гравер имеет в проекции форму треугольника. С одной стороны, угол сведения к рабочей точке определяет, насколько инструмент тяжело сломать и как долго он проживет, а с другой — чем больше угол, тем шире будет рез при заданном заглублении.
Формула расчета ширины реза при заданном заглублении выглядит так (нескромно взята с reprap.org и исправлена):
2 * penetration depth * tangens (tool tip angle) + tip width
Считаем по ней: для гравера с углом 10 градусов и точкой контакта 0,1 мм при заглублении 0,1 мм мы получаем ширину реза почти 0,15 мм. Исходя из этого, кстати, можно прикинуть, какое минимальное расстояние между дорожками сделает выбранный гравер на фольге выбранной толщины. Ну и еще, даже если вам не надо очень маленьких расстояний между дорожками, слишком глубоко фрезу опускать все равно не стоит, так как стеклотекстолит очень сильно тупит фрезы даже из твердых сплавов.
Ну и тут есть еще смешной момент. Допустим, у нас есть две дорожки, отстоящие друг от друга на 0,5 мм. Когда мы прогоним pcb2gcode, он посмотрит на значение параметра Toolpath offset (насколько отступать от дорожки при фрезеровке) и фактически сделает между дорожками два прохода, отстоящие друг от друга на (0,5 – 2 * toolpath_offset) мм, между ними останется (а скорее всего, сорвется) какой-то кусочек меди, и будет это некрасиво. Если же сделать toolpath_offset большим, чем расстояние между дорожками, то pcb2gcode выдаст warning, но сгенерирует только одну линию между дорожками. В общем случае для моих применений это поведение более предпочтительно, так как дорожки получаются шире, фреза режет меньше — красота. Правда, может возникнуть проблема с smd-компонентами, но маловероятно.
Есть выраженный случай такого поведения: если задать очень большой toolpath_offset, то мы получим печатную плату в виду диаграммы Вороного. Как минимум — это красиво
Теперь про биения гравера. Это я их зря так называю. Шпиндель у меня неплохой вроде и так сильно, конечно, не бьет. Тут скорее кончик гравера при перемещении изгибается и прыгает между точками, давая вот ту странную картину с точечками. Первая и основная мысль — фреза не успевает прорезать и потому перепрыгивает. Легкое гугление показало, что народ фрезерует печатные платы шпинделем на 50к оборотов со скоростью примерно в 1000 мм/мин. У меня шпиндель дает 10к без нагрузки, и можно предположить, что резать надо со скоростью 200 мм/мин.
Изготовление печатных плат лазером
Способ придуман случайно, но оказался очень хорош для простых плат. Этот метод требует некоторого объяснения. Встал вопрос как вырезать рисунок траектории дорожек и ненужные элементы с помощью лазера, а затем снять его? После такой процедуры все равно нужно удалить светочувствительный слой, то есть промыть его раствором NaOH (каустическая сода). После этого как обычно травить.
Начало удаления ненужных мест.
После травления вид далее.
Есть небольшие сдвиги на колодках в верхней части платы. Однако это особо не беспокоит.
Идем дальше, а как насчет больших печатных плат? Идея та же, но задействовал программу CopperCAM, используемую для фрезерования печатных плат. Итак, обезжириваем, красим тонким слоем краски и прожигаем. Помещаем файлы Gerber в CopperCAM и сохраняем результат в DXF.
После открытия файла Гербера выбираем отмеченную опцию из меню.
И увидим окно с настройками.
В верхнем поле введите количество раз, которое лазер (резак) должен обойти дорожки, а в нижнем дополнительный обход контактных площадок. После ввода соответствующих значений программа начинает отображать полученный файл.
После увеличения видны дополнительные траектории инструмента.
Сохраняем файл в одном из многих предлагаемых форматов. После сохранения в формате, который поддерживает нашу программу гравировки, приступаем к работе.
После сжигания и удаления сгоревшей краски.
И после травления можете увидеть эффект. Есть небольшие недостатки, но об этом ниже.
Виды лазерной резки
В зависимости от мощности луча, лазерные станки позволяют выполнять такие виды обработок:
- плавление;
- испарение.
Резать детали путём расплавления выгодно по следующим причинам:
- ресурс лазера выше, чем при испарении;
- меньшее потребление электроэнергии;
- допускается резка заготовок различной толщины;
- точная регулировка луча системой управления — фокусировка, угол наклона;
- высокое качество торцов деталей после обработки;
- при добавлении газов снижается вероятность образования окислов.
Метод испарения применим для небольшой толщины. Требует значительных энергозатрат, поэтому на практике его используют достаточно редко. Изготовление деталей становится экономически не выгодным.
Создаем сначала проект
Создавать проект (рисовать будущую ПП) можно при помощи многих программ, загружаемых в чпу станок. У всех есть плюсы и минусы. Но мы поговорим, как применить схемы программы Eagle. Изготовляется несложная плата, с разнотипными отверстиями (под разъемы, вывод кнопок, крепежными и для позиционирования – их диаметры отражены на схеме).
Рисунок выполняют на каждом из четырех слоев:
- Top предназначен для верхних дорожек.
- Bottom – для нижних.
- Dimension – для контуров будущей платы.
- Milling – слой для фрезерных работ.
Если для создания проекта ПП используют одну из программ Sprint Layout (6 версия), учитывается специфика обработки фольгированных материалов. Трассировку выполняют в виде широких дорожек, чтобы были зазоры, и могли пройти граверы. За точку начала координат принято считать угол слева и внизу.
Важно! Нужны зазоры между краями плат и дорожками с тем, чтобы они не пересекались с контуром. Открыв в программе окно, в котором выполняется настройка «стратегий» фрезеровки, оговариваем ширину дорожки, которая, по сути, равна толщине инструмента), далее намечаем отверстия (их выполнят станки по сверлению), определяя траекторию и скорость обработки платы
Нужно внимательно проследить, чтобы не возникло замыканий между теми дорожками, которые не принадлежат к одноименной цепи. Будут найдены ошибки – файлы следует исправлять и пересохранять
Открыв в программе окно, в котором выполняется настройка «стратегий» фрезеровки, оговариваем ширину дорожки, которая, по сути, равна толщине инструмента), далее намечаем отверстия (их выполнят станки по сверлению), определяя траекторию и скорость обработки платы. Нужно внимательно проследить, чтобы не возникло замыканий между теми дорожками, которые не принадлежат к одноименной цепи. Будут найдены ошибки – файлы следует исправлять и пересохранять.
Второй этап – создание УП
Затем готовят УП. Открыв файл, обуславливающий ход фрезеровки, настраиваем параметры, определяемые моделью используемого агрегата, инструментом и материалами. Речь идет о рабочей подаче и глубине процесса резания. Конвертация (кодирование) происходит путём нажатия на соответствующую клавишу, и программа генерирует G-код. Глубина фрезерования подбирается экспериментально, станок настраивают, чтобы фрезой или гравером снимали лишь слой меди. Когда файл приготовлен, он загружается в Mach3 и факт загрузки контролируется визуально. Выставляются нули, и фрезерный станок начинает обработку.
Подготовка файлов для следующих процессов (сверление, вырезание по контуру) выполняется так же. Результаты настроек для различных операций загружаются в Step Cam и сохраняются отдельно. Глубина обработки определяется, исходя из толщины стеклотекстолита. Если эта величина 1,5 мм, выставляется глубина сверления 1,6-1,7 мм. Фрезеруя по контуру в 2-4 прохода, задается глубина погружения 0,5 мм. После каждого из проходов на фрезерных станках, инструмент вручную опускается по оси «Z» и выполняется обнуление.
«Умный» станок, прочитав строки программы, должен понимать, что необходим возврат к нулевым координатам
Важно учитывать различие сверл. Программа Mach3 может сама определять длину инструмента и останавливать станок в процессе замены сверла
Особенности работы
Изучая, как самому сделать ручной резак по пенопласту
, необходимо также рассмотреть особенности функционирования подобного оборудования. Как уже было сказано выше, такой инструмент имеет струну. Она нагревается и расплавляет поверхность пенопласта.
Подобный материал достаточно плохо реагирует на нагрев
Поэтому важно выдерживать технологию проведения всего процесса. Раскрой при помощи раскаленной нити выполняется быстро. Это позволяет добиться высокого качества разреза
Это позволяет добиться высокого качества разреза.
Проверить уровень нагрева струны просто. Для этого на пробном куске пенопласта проводят тест. Если при погружении нити, на ней остаются длинные куски материала, она еще недостаточно разогрелась. Если же на струне вообще нет пенопласта, значит, температура слишком высока. В этом случае придется немного остудить инструмент. При правильном нагреве получается выполнять быстрый, точный раскрой.
Простой электрический резак
Рассматривая, как сделать резак для пенопласта
, следует изучить конструкцию простейшего оборудования этого класса, которое работает от электричества. При этом потребуется подготовить тонкую гитарную струну и несколько батареек (например, от фонарика).
Принцип работы этого оборудования прост. Конструкция из батареек образует единый блок. К нему подсоединяют гитарную струну. При прохождении электрического тока по цепи, она будет нагреваться. Именно в таком состоянии струна сможет легко разрезать лист пенопласта.
При работе такого инструмента материал будет плавиться. Струна нагревается до 120 ºС и даже больше. При этом вполне можно разрезать несколько больших плит из пенопласта. Если же требуется выполнить большой объем работы этот вариант не подойдет. Быстро сядут батарейки. Придется предусмотреть вариант подключения системы в бытовую сеть.
Конструкция
На первый взгляд схема кажется сложной, однако, это не так. По сути, мини станок не сильно отличается от классического, он меньшего размера с некоторыми нюансами в схеме компоновки конструкции.
Так как данное оборудование обладает не большими размерами, его стоит рассматривать как настольное.Самодельный вариант оборудования обычно слегка больше, чем покупной, из-за того что при сборке своими руками не всегда есть возможность оптимизировать конструкцию подобрав малогабаритные комплектующие. Но и в таком случае самодельный станок будет иметь малые габариты и вес не более 5 кг.
Видео по сборке
Элементы сверлильного станка
Чтобы собрать мини устройство своими руками, вам потребуется следующее:
- Станина;
- Переходная стабилизирующая рамка;
- Планка для перемещения;
- Амортизатор;
- Ручка-регулятор высоты;
- Крепление для двигателя;
- Двигатель;
- Цанга (или патрон);
- Переходники.
Стоит отметить, что мы описываем самодельный мини сверлильный станок, собираемый из подручных средств своими руками. Заводская конструкция отличается использованием специализированных узлов, которые изготовить собственноручно практически невозможно.Основой сверлильного мини агрегата, как и любого другого, является станина. Она выполняет функцию основания, на которой будут держаться все узлы. Станиной может являться подручное устройство, например: скелет микроскопа; стойка для проведения линейных измерений цифровым индикатором.
А можно изготовить самому, например легкую деревянную станину – соединив дощечки саморезами, либо же тяжелую и устойчивую – приварив стальной профиль к металлическому листу. Лучше когда вес станины выше основного веса остальных узлов, это позволяет повысить устойчивость агрегата и снижает его вибрацию во время работы.
Двигатели для сверлильных станков для печатных плат
Еще одна интересная схема на основе запчастей от CD-ROM и фена с автоматической регулировкой частоты вращения двигателя в зависимости от нагрузки.
Самодельная станина
При изготовлении стальной станины своими руками, под нее можно прикрутить ножки, для фиксации её положения.Стабилизирующую рамку можно изготовить, например, из рейки или уголка, при этом лучше применять сталь.Вид планки для перемещения можно подобрать любой, наиболее удобный, при этом лучше совместить её с амортизатором. В некоторых случаях, амортизатор может сам быть такой планкой. Функции этих деталей заключаются в вертикальном смещении оборудования во время работы.Амортизатор можно изготовить самому или снять с офисной мебели раздвижные рейки, либо прибрести в магазине.Ручка-регулятор высоты устанавливается на корпус, стабилизирующую рейку или амортизатор.Крепление для двигателя устанавливают к стабилизирующей рамке, ею может быть, например, простой деревянный брусок. Она нужна для вывода двигателя на нужное расстояние и его надежной фиксации.Затем двигатель устанавливают непосредственно на крепление.К двигателю непосредственно присоединяют патрон или цанги, к которым крепятся переходники, используемые для установки сверл. Переходники подбираются индивидуально, в зависимости от вала двигателя, его мощности, типа сверл и т.п.В заключении можно сказать, что собранный сверлильный мини станок, можно постоянно дорабатывать в ходе эксплуатации. Например, можно наклеить на патрон светодиодную ленту, для подсветки просверливаемых образцов.
Принципы выбора
Оборудование для лазерной резки металла выбирается по следующим критериям:
- производительности, скорости обработки, позиционирования луча над рабочей поверхностью;
- типу излучателя (металлического или керамического), срока его службы, надёжности, особенностей конструкции;
- торговой марки, под которой был изготовлен станок;
- гарантийному сроку от производителя;
- виду материалов деталей, используемых в устройстве позиционирования лазера, особенно направляющих;
- назначению, условиям эксплуатации, на которые рассчитан промышленный станок;
- удобству и простоте управления;
- возможностям расширения функциональности;
- требованиям к помещению, где будет выполнена установка оборудования;
- стоимости конкретной модели, комплектующих, расходных материалов.
Дизайн станка
Дизайн и компоновка оборудования для лазерной резки металла обеспечивают удобство в работе, а также производительность. Простота удаления стружки, доступное пространство для перемещения заготовки относительно лазера, эффективность охлаждения — вот основные параметры, зависящие от расположения конструктивных элементов.
Важно обращать внимание на следующие узлы:
- подъёмный стол;
- лазер;
- систему охлаждения;
- оптику.
Подъёмный стол
Станок для лазерной резки оснащён подъёмным столом, предназначенным для закрепления и перемещения заготовки относительно луча. Перемещение может быть линейным вдоль вертикальной оси координат. Он обладает различной грузоподъёмностью, площадью, способен перемещаться при помощи механического или электрического подъёмного привода.
Мощность лазера и охлаждение
Лазерный резак по металлу оснащается лазерами различной мощности, позволяющими выполнять различные задачи. Чем выше мощность, тем качественнее обработка, больше допустимая толщина заготовок, но и выше энергопотребление.
Для эффективной работы и установки необходимо обеспечивать качественное охлаждение трубки. От этого будет зависеть ресурс работы лазера. Обычно достаточно водяной системы с датчиком потока, позволяющим контролировать охлаждение.
Лазер для резки металла
Оптика
Устройство для лазерной резки предусматривает установку оптики, назначение которой фокусировать луч. Она может быть следующих видов:
- длиннофокусной, применяемой для обработки толстых заготовок;
- короткофокусной, используемой для гравировки или резки тонколистового металла.
Цены
Стоимость оборудования зависит от следующих факторов:
- производителя;
- функциональности;
- типа лазера;
- оптической системы;
- площади рабочей поверхности;
- системы охлаждения.
Лучшие рулонные режущие модели
Принцип действия основан на передвижении печатающей головки и самой бумаги. Качество печати сохраняется. Отличаются компактностью конструкции, приемлемой стоимостью расходных материалов и возможностью использовать длинные носители (до 10 метров). Для домашнего пользования целесообразнее купить рулонный тип плоттера. Рассмотрим лучшие из них по результатам нашего исследования.
GCC Expert II-24 LX
Лучший выбор для новичков в резке материалов. Сфера творчества разнообразна – от офисных бейджей до дорожных знаков, рекламных вывесок. Работает на оптимальной скорости 705 мм/с. Максимальная толщина материала – 8 мм. Формат – А1. Носитель сворачивается в рулон. Автоматическая система выравнивает его, обеспечивая высокую точность резки. Подача осуществляется протяжным методом. Готовую часть работы можно отрезать сразу по прямой линии и предотвратить расход материала. Для этого предусмотрен инструмент ручной обрезки.
Подключение к ПК возможно двумя способами: через USB или последовательный порт. Для пользователей всех уровней дизайна и рекламы поставляется специальное программное обеспечение. Объем памяти – 32 Мб. Производитель гарантирует, что барабан внутри конструкции рассчитан на идеальную резку до 3-х метров в длину, без погрешностей. Занимает мало места и весит всего 11 кг.
Достоинства:
- Качественная сборка;
- Система автоматического выравнивания;
- Удобный интерфейс;
- Справляется с толстым, сложным в обработке материалом;
- Хороший объем памяти;
- Соотношение цена/качество.
Недостатки:
Не выявлены.
Silhouette Portrait
Персональный компактный инструмент больше ориентирован на творческого пользователя. Подходит для скрапбукинга, квиллинга, квилтинга (лоскутная аппликация), 3D-моделирования и проектов со сложным рисунком. Осуществляет печать флаеров, фотоматериалов, чертежей рекламы, бейджей, этикеток посредством специального ножа. Максимальный формат носителей – А4, толщина – 0,8 мм. Глубину резки можно увеличить до 2 мм, если установить крафт-нож (покупается отдельно).
Оснащен микрошаговым двигателем, который отличается повышенной точностью перемещения. Можно вырезать печатные материалы по «меткам» с помощью технологии PixScan. К компьютеру подключается посредством USB-кабеля. Есть адаптер Bluetooth. Для работы с ним необходимо наличие bluetooth-подключения в ПК. Управление понятно-интуитивное, при помощи кнопок. Скорость печати регулируется на приборе.
В комплект поставки включены: подложка для резки формата А4, универсальный нож, кабель, инструмент для извлечения адаптера Bluetooth и регулировки ножа. Программное обеспечение скачивается с сайта производителя.
Достоинства:
- Простое ПО;
- Быстрая, точная работа;
- Доступные расходные материалы;
- Небольшой вес, компактные габариты;
- Приемлемая цена.
Недостатки:
- Громкий;
- Не предусмотрен инструмент ручной резки, что увеличивает расход носителей.
Режущий плоттер линейки Portrait имеет многочисленные отзывы от пользователей разного уровня владения технологией резки. Для новичков предусмотрен процесс обучения на сайте производителя. Занимает около 30 минут.
Mimaki CG-130SRIII
Профессиональная линейка от японского бренда применяется в производственных целях и обладает скоростной, высокоточной резкой на всевозможных носителях: флок, резина, винил, различные ПЭТ-материалы. Можно применять на длинных траекториях. Нож двигается со скоростью 700 мм/с и максимальным давлением 500 гр. Режущий плоттер Мимаки оснащен оптическим позиционированием, сенсорами и серводвигателем. Для наглядности: двигатель такого типа применяется только в оборудовании премиум-класса.
Интерфейс полностью ориентирован на комфорт пользователя. Есть функция уведомления о событиях, окончании работ и возникших ошибках на электронную почту – отпадает необходимость в постоянном мониторинге состояния аппарата. На ЖК-дисплее диагональю 3 дюйма отображается необходимая информация. Подключение осуществляется через интерфейсы Ethernet, USB2.0, RS-232C. Емкость буфера памяти – 27 Мб. В комплекте идут две профессиональные компьютерные программы для создания дизайнов, рисунков для резания на разном уровне.
Достоинства:
- Высокое японское качество;
- Вакуумное крепление;
- Увеличенная скорость;
- Позволяет резать широкий спектр материалов;
- Удобный интерфейс;
- Регулярное обновление ПО.
Недостатки:
Не обнаружены.
Получение gcode из gerber-файлов
Итак, как получить gerber-файл, я особенно описывать не планирую, я думаю, это все умеют. Дальше нужно запустить pcb2gcode. Оказывается, он требует примерно миллион параметров командной строки, чтобы выдать что-то приемлемое. В принципе, документация у него неплохая, я ее осилил и понял, как получить какой-то gcode даже так, но все же хотелось казуальности. Потому был найден pcb2gcode GUI. Это, как подсказывает название, GUI для настройки основных параметров pcb2gcode галочками, да еще и с предпросмотром.
Собственно, на этом этапе получен какой-то гкод и можно пробовать фрезеровать. Но пока я тыкал в галочки, выяснилось, что дефолтное значение заглубления, которое предлагает этот софт, — 0,05 мм. Соответственно, плата должна быть установлена во фрезере как минимум с точностью выше этой. Я не знаю, у кого как, но у меня рабочий стол у фрезера заметно более кривой. Самое простое решение, что пришло в голову, — поставить на стол жертвенную фанерку, отфрезеровать в ней карман под размеры плат — и она окажется идеально в плоскости фрезера.
Для тех, кто уже хорошо владеет фрезером, эта часть неинтересна. После пары экспериментов я выяснил, что фрезеровать карман обязательно нужно в одном направлении (например, подачей на зуб) и с захлестом хотя бы процентов на тридцать. Fusion 360 мне предложил сначала слишком маленький захлест и ездил туда-сюда. В моем случае результат получился неудовлетворительный.