Как сделать простой ЭМИ излучатель своими руками!
На нашем сайте по схемотехнике периодически поднимаются темы, связанные с электронным оружием — пушки Гаусс, глушилки радиочастот и так далее. А что же наша армия, имеющая милиардные бюджеты — как далеко сумели продвинуться военные разработчики на пути создания оружия будущего? Небольшой обзор имеющихся уже сейчас на вооружении образцов мы и рассмотрим далее. Импульсное электромагнитное оружие является реальным, уже проходящим испытания, типом вооружений армии России. Америка и Израиль также проводят успешные разработки в этой области, однако сделали ставку на использование ЭМИ-систем для генерации кинетической энергии боезаряда. У нас же пошли по пути прямого поражающего фактора и создали прототипы сразу нескольких боевых комплексов – для сухопутных войск, ВВС и ВМФ. Сегодня наша «Алабуга», разорвавшись на высоте 300 метров, способна отключить всю электронную аппаратуру в радиусе 3 км и оставить войсковое подразделение без средств связи, управления, наведения огня, при этом превратив всю имеющуюся технику противника в груду бесполезного металлолома. Это ракета, боевым блоком которой является высокочастотный генератор электромагнитного поля большой мощности. Но прежде чем говорить о применении ЭМИ-оружия, следует сказать, ещё что Советская Армия готовилась воевать в условиях применения поражающего фактора ЭМИ. Поэтому вся военная техника разрабатывалась с учётом защиты от этого поражающего фактора. Способы различны — начиная от простейшего экранирования и заземления металлических корпусов аппаратуры и заканчивая применением специальных предохранительных устройств, разрядников и устойчивой к ЭМИ архитектурой аппаратуры. Так что говорить, будто от него нет защиты, тоже не стоит. Да и радиус действия у ЭМИ-боеприпасов не такой большой — плотность его мощности убывает пропорционально квадрату расстояния. Соответственно, убывает и воздействие. Конечно, вблизи точки подрыва защитить технику сложно.
Оружие для электромагнитных импульсов (ЭМИ, EMP) своими руками
ЭМИ (электромагнитный импульс) довольно популярны в мире научной фантастики. Было бы здорово иметь свою собственную установку для ЭМИ пушки? Так и подумал, перед тем, как начал сборку электромагнитного излучателя своими руками.
Я хотел сделать ЭМИ генератор, который был бы портативным, и его можно было бы спрятать под рукавами. Если у вас есть правильные компоненты, вы можете собрать её в кратчайшие сроки.
ВНИМАНИЕ: Этот проект не для детей. Если говорить серьезно, вы можете получишь шок
Конденсаторы действительно мощные и поэтому, пожалуйста, будьте осторожны при обращении со схемой
Если говорить серьезно, вы можете получишь шок. Конденсаторы действительно мощные и поэтому, пожалуйста, будьте осторожны при обращении со схемой.
Я не несу никакой ответственности, если вы что-то уничтожаете этим оружием.
Шаг 1: Абсолютно необходимые вещи
Схема старой камеры, независимо от того, является ли она одноразовой или нет, абсолютно необходима. Если у вас её нет, то её не так сложно сделать, но это займет много времени. Альтернативный способ — использовать схему с замком или отдельно продаваемую вспышку камеры.
Я использовал схему камеры 15-летней давности. Просто вынул её из корпуса. Схема работает от 3В аккумуляторной системы.
Причина, по которой я использовал обычную схему камеры вместо схем одноразовых камер, заключается в том, что конденсатор в обычной камере намного мощнее, чем в одноразовых. Если вы используете схему отдельной вспышки, она также намного мощнее, чем схемы обычных камер.
Пожалуйста, будьте осторожны при извлечении цепи. Конденсатор все еще может хранить заряд.
Шаг 2: Катушка
Я должен был сделать катушку, которая не занимает много места, потому что она будет фиксироваться в ладони. Если катушка будет слишком большая, я могу поучить шок только за счёт легкого движения ладони.
Итак, я вынул катушку из старой схемы SMPS. У меня были дополнительные медные провода. Поэтому я использовал их, чтобы сделать катушку более мощной.
Убедитесь, что обмотка медного провода тугая, иначе она будет неэффективной.
Шаг 3: Начинаем сборку, делаем каркас
Надо как-то зафиксировать катушку на уровне ладони. Также нужно быть уверенным в правильной изоляции, чтобы избежать ударов током.
Чтобы обеспечить изоляцию, я использовал металлическую полосу и толстый картон. После этого я нашел антенну рации, которую закрепил на ладони с помощью ленты.
Смысл крепления антенны — позволить ладони свободно двигаться. Она должна быть гибкой, чтобы вы могли правильно согнуть руку.
Шаг 4: Добавляем жизненно важные элементы
Теперь, когда каркас готов, мы должны прикрепить к нему самую важную часть — схему камеры. Чтобы прикрепить схему, я снова использовал картон
Также обратите внимание, что я не снял часть оболочки антенны — это позволит мне поворачивать ладонь вокруг запястья. Я прикрепил схему к этой черной изоляции
Шаг 5: Дорабатываем каркас
Вся конструкция должна быть построена так, чтобы она оставалась на руке. Ранее мы прикрепили металлическую полосу, чтобы катушка оставалась на ладони. Теперь нам нужно прикрепить еще одну металлическую полоску, чтобы концевая часть оставалась неподвижной на предплечье.
Чтобы это стало возможным, я использовал увеличительное стекло.
Шаг 6: Источник энергии
Прикрепите держатель батарейки АА к цепи. Сначала выясните, где в цепи ранее находились точки, к которым были подключены провода от батареи. Припаяйте провода правильно.
Шаг 7: Подключаем катушку
Сначала правильно соедините провода с катушкой. Вы можете припаять их. Один провод должен быть прикреплен в начале катушки, другой провод — в конце катушки.
Эти два провода должны быть спаяны с двумя электродами конденсатора в цепи
Не забудьте прикрепить выключатель — это важно
Шаг 8: Завершение
Чтобы прикрепить катушку к ладони, я использовал желтую изоленту. Держатель батареи крепится к предплечью с помощью ленты.
Теперь пришло время что-нибудь разрушить!
Видео об электромагнитной бомбе
В последнее время развелось много злых бродячих собак, да и других опасных животных. Как защитить себя от них? Кто-то советует электрошокер, — будем ждать пока собака подбежит на расстояние вытянутой руки? Кто-то ультразвуковой отпугиватель, — но если она глухая? А за ствол, можно вообще сесть. Выход один — ФОТОННЫЙ ИМПУЛЬСНЫЙ ИЗЛУЧАТЕЛЬ.
Все мы иногда фотографируемся и знаем, как неприятно смотреть на срабатывающую вспышку. Причём надо ещё и глаза держать открытыми. А ведь свет бьёт не только в глаза, а рассеивается равномерно по помещению. Теперь представьте что будет, если эта сотня джоуль импульсного излучателя сфокусируется оптической линзой в узкий луч наподобии того, как это делается в DVD-лазере, и в виде мощнейшего импульса шарахнет по глазам объекта нападения!
Принцип действия импульсного излучателя , заключается в фокусировки фотовспышки, линзой диаметром около 50мм с 10-кратным увеличением до тонкого луча . Саму вспышку, с питанием от батареек, можно собрать по любой известной схеме, например такой:
Описание работы схемы импульсного излучателя : Интегральная схема типа LM386 представляет собой усилитель звуковой частоты. ИС включена по схеме мультивибратора, генерирующего импульсы частотой около 30 кГц, определяемой номиналами R3 и С1. На выходе (вывод 5) при этом формируются импульсы прямоугольной формы, которые через конденсатор С2 поступают на трансформатор ТТ.
Трансформатор Т1- сетевой понижающий трансформатор на 6-12В. Его низковольтная обмотка используется в схеме в качестве первичной. Размах выходного напряжения на вторичной обмотке при этом равен приблизительно 400 В, что после выпрямления выпрямителем D1, СЗ, С4 обеспечивает на его выходе постоянное напряжение 300 В. После выключения схемы, прежде чем браться руками за конденсаторы СЗ, С4, С5, их предварительно следует разрядить. Постоянное напряжение, поджигающее импульсную лампу ИФК-120, подается через резистор R4 на конденсатор С5.
Высокое напряжение поджига, необходимое для импульсной лампы, формируется катушкой Т2, подключенной к аноду. При подключении энергия, накопленная заряженными до 300 В конденсаторами СЗ и С4, обеспечивает яркую вспышку импульсной лампы FT.
Цепь управления поджигом состоит из элементов С4, С5, D2 R5, SW1 и Т2. При открывании тиристора D2 управляющее напряжение поступает на катушку Т2. Непосредственное подключение конденсатора С5 к катушке с помощью механического ключа привело бы к быстрому прогоранию
Детали: IC1 — усилитель LM386; D1-1N4004; D2-тиристор С106В1 или любой другой; T1- малогабаритный трансформатор 220В/10В; T2-пусковой дроссель (стандартный, от любой советской вспыхи — фил, луч, и т. д.); FT -лампа-вспышка ИФК-120, Е2-486 (или аналогичные); С1-0,003 мкФ; С2-300 мкФ. 15 В; СЗ, С4-470 мкФ, 400 В; С5 — 0,47 мкФ, 400 В; R1 1 кОм; R2-10kOm; R3- 22 кОм; R4 220 кОм; R5-47 кОм.
Как вариант, можно взять и такие схемы импульсного излучателя с батареечным питанием:
Лампу для импульсного излучателя берём дешёвую советскую ИФК-120 с небольшой доработкой. Поверх колбы наматываем провод для лучшего срабатывания.
Настраивать фокусное расстояние линзы можно с помощью простого стробоскопа:
Саму линзу берём от увеличительной десятикратной лупы. Подключаем ИФК-120 к схеме стробоскопа и приближая — удаляя линзу добиваемся фокусировки вспыха светового пятна на стене. Далее закрепляем всё в корпусе от какой-нибудь нерабочей вспышки и импульсный излучатель готов.
Содержимое:
Электромагнитный импульс (ЭМИ) – это естественное явление, вызванное резким ускорением частиц (в основном, электронов), которое приводит к возникновению интенсивного всплеска электромагнитной энергии. Повседневными примерами ЭМИ могут служить следующие явления: молния, системы зажигания двигателей внутреннего сгорания и солнечные вспышки. Несмотря на то, что электромагнитный импульс способен вывести из строя электронные устройства, данную технологию можно применить для целенаправленного и безопасного отключения электронных устройств или для обеспечения безопасности персональных и конфиденциальных данных.
Как использовать направленный СВЧ-излучатель
Мощная СВЧ-пушка может быть использована в таких целях:
- Уничтожение жуков и прочих вредных насекомых. Микроволны превращают молекулы жидкости в пар — так можно истребить жучков, грызущих деревянные постройки. Сама древесина от микроволн не страдает.
- Плавление цветных металлов.
- Сушка и стерилизация круп (убивает жучков и бактерии).
- Вывод из строя подслушивающих устройств. Микроволны препятствует работе любых «шпионских» приборов.
- Помехи для соседского телевизора, включенного на полную громкость, — можно запросто убавить звук. Следует учесть: в 10 м от пушки зависают телефоны, а в компьютерах и телевизорах происходит искажение звука. Запрещается долгое воздействие на эти устройства — они могут взорваться.
- Зажигание ламп дневного света с большого расстояния.
- Кипячение небольшого количества воды.
Влияние на человека
В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.
Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q
Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:
- характер производимого излучения;
- как долго и с какой интенсивностью оно продолжается.
Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.
Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.
Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.
Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается
С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.
На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.
Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние
Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.
Как сделать электроискровой станок своими руками?
#1
Для тех, кто не в курсе возможностей такого агрегата, целесообразно указать, что только с его помощью можно выполнять отверстия любого диаметра на самых твердых и прочных материалах, вне зависимости от их толщины и плотности. Кроме того, электроискровой станок способен гравировать поверхности, затачивать насадки инструментов, выполнять самые тонкие просветы и щели и даже высверливать резьбовые инструменты, которые сломались и безнадежно застряли, делая дальнейшее использование устройства невозможным. Вполне естественно, что наличие такого агрегата на подсобном хозяйстве открывает совершенно новые горизонты возможностей, однако стоимость и габариты готовых электроискровых станков делают их, мягко говоря, трудно доступными. Однако, подобное положение вещей не должно заставлять мастера отказываться от своей мечты, ведь при большом желании можно попытаться изготовить такое устройство самостоятельно.
#2
На самом деле в этом нет ничего сложного, да и себестоимость самодельного электроискрового станка приятно удивит своей бюджетностью, ведь в ход можно пустить многие имеющиеся в наличии подручные средства. Однако, перед тем, как приступить к выполнению поставленной задачи, целесообразно более подробно описать устройство электроискрового станка, а самое главное, принцип его действия. Так, вся суть работы данного приспособления сводится к полному либо частичному разрушению обрабатываемой поверхности, которое происходит в результате воздействия импульсного электроразряда. Говоря проще, металл или любой другой материал попросту расплавляются от выделяемого установкой тепла, причем для усиления эффекта желательно использовать вспомогательную жидкость. Так, в идеале на потенциально контактное место наносить обычный керосин, который всегда найдется на хозяйстве.
#3
Между тем, вспомогательная жидкость способна не только омывать само место соединения вибрирующей насадки и обрабатываемой поверхности, но и смывать все продукты эрозии. Что касается электродов, то в их качестве лучше всего использовать специальные стержни из такого жесткого материала, как латунь, причем они должны иметь ту же форму и габариты, что и у выполняемого отверстия. Не должно возникнуть трудностей и с принципиальной схемой электроискрового станка, ведь при желании подробный аналог подобного рода мини-установки можно отыскать на любом интернет-ресурсе. Так, весь принцип работы готового устройства подразумевает собой следующий процесс: контактный «плюс» разрядного конденсатора подводится к обрабатываемой детали, в то время, как его же «минус» подключают к самому инструменту, после чего приводится в действие электромагнитный вибратор.
#4
В результате выделяемых искр удается блокировать сварку инструмента с обрабатываемой поверхностью, которая для обеспечения элементарных мер безопасности закрепляется в специальном зажимном устройстве, оборудованном дополнительным электрическим контактом со специальной «ванночкой». Для того, чтобы собрать силовой трансформатор своими руками, лучше всего использовать сердечник (модификация Ш-32), выполненный из обычных трансформаторных стальных листов с толщиной набора не менее 4 сантиметров. Что касается самих подмоток, то первичная должна содержать не менее тысячи витков (отвод на 650 витке), в то время как вторичная — до 200 витков. В первом случае лучше всего использовать стальные провода модификации ПЭВ/0,41, а во втором — ПЭВ/2, диаметр которых составляет целых 125 миллиметров.
#5
Не следует забывать и о таком важнейшем нюансе, как обеспечение промежуточной экранирующей обмотки, предусматриваемой между первичной и вторичной обмотками. Небольшие трудности могут возникнуть с созданием емкости конденсатора, которая должна расположить в себе сразу два приспособления по 50 Вольт каждое. Что касается реостата, то максимальное сила тока, на которую он рассчитан, составляет от трех до пяти Ампер, причем использовать следует лишь приспособление с нахромовой обмоткой.
Что такое электромагнитный импульс
Всякий раз, когда электрический ток проходит через провода, он производит электрическое и магнитное поля, которые исходят перпендикулярно движению тока. Размер этих полей пропорционален силе тока. Длина провода напрямую влияет на силу тока индуцированного электромагнитного импульса. Кроме того, даже обычное включение питания производит короткий всплеск электрической и магнитной энергии.
При этом всплеск настолько мал, что едва заметен. Например, коммутационные действия в электрической схеме, двигателях и системах зажигания для газовых двигателей так же производят к небольшим ЭМИ импульсам, которые могут вызвать помехи на соседнем радио или телевидении. Для их поглощения используются фильтры, удаляющие незначительные всплески энергии и помехи от них.
Большой выброс энергии производится, когда некий заряд электричества быстро разряжается. Данный электростатический разряд (ESD) может шокировать человека или вызвать опасные искры вокруг паров топлива. Так же многие помнят, что в детстве мы бы протирали ноги об ковер, а затем касались друзей, создавая разряд ESD. Это тоже одна из форм ESD.
Чем сильнее энергия импульса, тем больше он может повредить здания и воздействовать людей. Например, молния является мощной формой ЭМИ. Электростатический разряд от молнии может быть очень опасным и стать причиной катастрофы. К счастью, большинство молнии замкнуто на землю, где электрический заряд поглощается. Громоотвод изобрел Бенджамин Франклин, благодаря чему сегодня сохраняются многие здания и сооружения.
Такие события, как ядерные взрывы, высотные неядерные взрывы и солнечные бури могут создать мощный ЭМИ, который наносит ущерб электрическому и электронному оборудованию, расположенному недалеко от источника события. Все это угрожает электросетям и функционированию большинства электрических и электронных устройств в нашей жизни.
Из чего состоит микроволновка
Чтобы сильно не углубляться в устройство микроволновки, статья все-таки не об этом, можно вкратце взглянуть, из чего же на самом деле состоит этот полезный бытовой прибор.
Итак, основными элементами микроволновки, являются:
- Нагревательный элемент, в качестве которого используются специальные вакуумные лампы;
- Понижающий трансформатор переменного тока;
- Вентилятор;
- «Мозги» с микроконтроллером и всевозможными электромагнитными реле, зуммером, и прочими деталями;
- Металлического корпуса;
- Двигателя.
Из некоторых моделей микроволновок, например, с грилем, можно извлечь различные нагревательные элементы, инфракрасные излучатели и т. д. Их также можно приспособить под изготовление полезных самоделок.
Как видно, микроволновка состоит из множества элементов, которые вполне можно приспособить под собственные нужды. Однако начнём мы с самых простых вещей, и уже переходя от простого к сложному, покажем, что именно можно сделать из микроволновки.
Принцип работы устройства
Рабочая площадь мухобойки представляет собой трехслойную сетку из металлических проводов, находящихся под напряжением. Все что нужно будет сделать — это несколько взмахов ракеткой в воздухе. В зависимости от модели, в ручку бывает вмонтирован светодиодный фонарик, который может использоваться как в составе электрической мухобойки, так и отдельно. Принцип работы устройства — при попадании летающего насекомого на рабочую поверхность металлической решетки происходит электрический разряд, достаточный для уничтожения насекомого, но безопасный для человека.
Схема в зависимости от производителя может очень сильно отличаться, но её суть не меняется — в качестве высоковольтной части преобразователя, от батареек 5-6 вольт до нескольких тысяч вольт. Пусть эта цифра вас не пугает, ток там маленький, как и у электрозажигалки, поэтому вреда не причинит даже при случайном касании сетки. В разных моделях питание осуществляется или от аккумуляторов, или от пальчиковых батареек. В первом случае схема содержит блок простейшего бестрансформаторного зарядного устройства.
Полезная теория
Элементная база РЭС весьма чувствительна к энергетическим перегрузкам, и поток электромагнитной энергии достаточно высокой плотности способен выжечь полупроводниковые переходы, полностью или частично нарушив их нормальное функционирование. Низкочастотное ЭМО создает электромагнитное импульсное
излучение на частотах ниже 1 МГц, высокочастотное ЭМО воздействует излучением СВЧ-диапазона – как импульсным, так и непрерывным. Низкочастотное ЭМО воздействует на объект через наводки на проводную инфраструктуру, включая телефонные линии, кабели внешнего питания, подачи и съема информации. Высокочастотное ЭМО напрямую проникает в радиоэлектронную аппаратуру объекта через его антенную систему. Помимо воздействия на РЭС противника, высокочастотное ЭМО может также влиять на кожные покровы и внутренние органы человека. При этом в результате их нагрева в организме возможны хромосомные и генетические изменения, активация и дезактивация вирусов, трансформация иммунологических и поведенческих реакций.
Главным техническим средством получения мощных электромагнитных импульсов, составляющих основу низкочастотного ЭМО, является генератор с взрывным сжатием магнитного поля. Другим потенциальным типом источника низкочастотной магнитной энергии высокого уровня может быть магнитодинамический генератор, приводимый в действие с помощью ракетного топлива или взрывчатого вещества. При реализации высокочастотного ЭМО в качестве генератора мощного СВЧ-излучения могут использоваться такие электронные приборы, как широкополосные магнетроны и клистроны, работающие в миллиметровом диапазоне гиротроны, генераторы с виртуальным катодом (виркаторы), использующие сантиметровый диапазон, лазеры на свободных электронах и широкополосные плазменно-лучевые генераторы.
Как это работает
Как можно создать столь мощное электромагнитное поле, которое способно оказывать подобное действие на электронику и электрические сети? Электронная бомба фантастическое оружие или подобный боеприпас можно создать на практике?
Электронная бомба уже была создана и уже два раза применялась. Речь идет о ядерном или термоядерном оружии. При подрыве подобного заряда одним из поражающих факторов является поток электромагнитного излучения.
В 1958 году американцы взорвали над Тихим океаном термоядерную бомбу, что привело к нарушению связи во всем регионе, ее не было даже в Австралии, а на Гавайских островах пропал свет.
Гамма-излучение, которое в избытке образуется при ядерном взрыве, вызывает сильнейший электронный импульс, что распространяется на сотни километров и выключает все электронные приборы. Сразу после изобретения ядерного оружия, военные занялись разработкой защиты собственной аппаратуры от подобного действия взрывов.
Работы, связанные с созданием сильного электромагнитного импульса, как и разработки средств защиты от него проводятся во многих странах (США, Россия, Израиль, Китай), но почти везде они засекречены.
Можно ли создать работающее устройство, на других менее разрушительных принципах действия, чем ядерный взрыв. Оказывается, что можно. Более того, подобными разработками активно занимались в СССР (продолжают и в России). Одним из первых, кто заинтересовался данным направлением, был знаменитый академик Сахаров.
Именно он первым предложил конструкцию конвенционного электромагнитного боеприпаса. По его задумке высокоэнергетическое магнитное поле можно получить путем сжатия магнитного поля соленоида обычным взрывчатым веществом. Подобное устройство можно было поместить в ракету, снаряд или бомбу и отправить на объект неприятеля.
Однако у подобных боеприпасов есть один недостаток: их малая мощность. Преимуществом подобных снарядов и бомб является их простота и низкая стоимость.
Шпиндельные узлы станка
Шпиндель выполнен в виде массивного ротора, с расположенной внутри него крепежной цангой, а в верхней точке полости, образованной двумя встречно обращенными коническими поверхностями, установлен заборник(улавливатель) рабочей жидкости. Такая конструкция шпинделя улучшает условия работы на станке.
Рис.1 – Шпиндель электроискрового станка
В скользящем подшипнике 1 расположен вращающийся посредством клиноременной передачи 2 шпиндель 3, выполненный в виде ротора, в концентрической расточке которого расположена на напряженной или тугой посадке цанга 4, для крепления по внешней поверхности обрабатываемой детали 5. Внутренняя полость ротора образована двумя встречно обращенными коническими поверхностями 6 и 7, Рабочая жидкость, подаваемая от гидронасоса по трубке 8 в отверстие обрабатываемой детали, под действием центробежных сил вращающегося шпинделя собирается на периферии внутренней полости (кармана) ротора, откуда через заборник 9 по трубке 10 поступает в фильтрующий элемент гидронасоса.
Выводы
Достоинства
: отлично убивает насекомых на лету, имеет компактные размеры, независимое питание от перезаряжаемых аккумуляторов, высокая эффективность борьбы с насекомыми, отсутствие химии, запахов.
Недостатки
: вероятность получить разряд током, случайно дотронувшись до металлической сетки.
Электрическая мухобойка
— достойный заменитель устаревших мухобоек, который доставит удовольствие при охоте за вредными летающими насекомыми.
Как сделать самому постановщик помех, для нейтрализации громкого шума от нехороших соседей? Предлагаемая глушилка предназначена для локального подавления сигналов ТВ и FM радио. Хочу сразу напомнить, что за постановку искусственных помех штраф на 20-70 минималок, с конфискацией технических средств ст. 139-3 КОАП РФ.